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 Abstract: Background: As not all target proteins can be easily screened in vitro, advanced virtual screening is 
becoming critical. 
Objective:  In this study, we demonstrate the application of reinforcement learning guided virtual screening for 
γ-aminobutyric acid A receptor (GABAAR) modulating peptides. 
Method: Structure-based virtual screening was performed on a receptor homology model. Screened molecules 
deemed to be novel were synthesized and analyzed using patch-clamp analysis.  

Results: 13 molecules were synthesized and 11 showed positive allosteric modulation, with two showing 50% 
activation at the low micromolar range.  

Conclusion: Reinforcement learning guided virtual screening is a viable method for the discovery of novel 
molecules that modulate a difficult to screen transmembrane receptor. 
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1. INTRODUCTION 
 Traditional discovery efforts for novel ligands are centered 
around physical screening methodologies that were optimized to 
keep costs at reasonable levels. Techniques such as high through-
put screening robots [1] emerged for small molecules, along with 
biological display technologies for biomolecules such as peptides; 
initiated by the Nobel prize winning phage display libraries [2, 3], 
followed by second generation display technologies have intro-
duced the inclusion of non-natural amino acids [4] and macrocy-
cles [5] into expressed systems. The common feature of all screen-
ing systems is a need to physically synthesize and screen large 
numbers of molecules to identify “hits”, so that despite the emer-
gence of breakthrough methodologies, costs remain substantial. 
High costs often limit screening to validated drug targets and keep-
ing screening technologies out of the reach of many researchers, 
perhaps delaying the emergence of new validated targets.  
 The introduction of virtual, in-silico screening methods can 
potentially reduce costs substantially. These methodologies have 
been classified into ligand-based approaches that typically define a 
common pharmacophore of existing known ligands and structure-
based approaches that typically “dock” candidate molecules into 
the 3D target structure [6]. Structure-based approaches are inde-
pendent of existing ligands, allowing the discovery of novel lig-
ands. Structure-based approaches are enabled by the ever-growing 
Protein Data Bank [7], which makes a wide range of protein struc-
ture solutions publicly available. This was exemplified by the 
SARS-CoV-2 epidemic, in which the structure solutions of many 
novel viral targets were deposited within months of the initial on-
set.  
 GABA is the main inhibitory neurotransmitter in both verte-
brate and invertebrate organisms [8]. GABA receptors are divided 
into two major classes, the GABAA ionotropic chlorine (Cl-) chan-
nels and the G protein-coupled GABAB receptors. GABAA receptors  
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play a crucial role in the central nervous system (CNS) in homeo-
stasis and pathological conditions, such as anxiety disorder, epilep-
sy, insomnia, spasticity, aggressive behavior, and other pathophys-
iological conditions and diseases [9]. The wide range of associated 
processes and conditions make GABAA receptors attractive drug 
targets. As transmembrane ion channels, GABAA channels enable 
physical high throughput screening for complicated molecules, 
inspiring the development of novel reporter cell lines for efficient 
screening [10].  Even with efficient reporter-gene cell lines, physi-
cal molecular screening remains challenging, making virtual 
screening methods attractive. 
 In this study, we report the application of reinforcement learn-
ing directed virtual peptide screening for novel GABAA channel 
modulators. Reinforcement learning is a field of machine learning 
that tackles problems using agents that learn behavior through trial 
and error, receiving rewards for favorable actions [11]. This meth-
odology differs from supervised learning in that a large training 
dataset is not required, allowing the discovery of truly novel mole-
cules. This methodology has been previously applied for the dis-
covery of a novel Y329S Glycogen Branching Enzyme chaperone 
[12] and novel, bispecific MD2/CD14 activating peptides [13]. As 
no known peptide GABAA channel modulators are known, ligand-
based approaches were less applicable, making it an ideal rein-
forcement learning test-case. In this study, we used reinforcement 
learning virtual screening on a homology model of the receptor, 
selected  novel peptides for synthesis and characterized their activi-
ty using patch-clamp analysis. 

2. MATERIALS AND METHODS 
2.1. Target Structure Preparation 
 A 3D structure of the target protein is required as input for 
reinforcement learning of optimized, structure-based searches. 
Since no specific human α1β3γ2 structure was available, the hu-
man Type-A γ-aminobutyric acid receptors (GABAAR) in the β3-
homo-trimer composition (PDB: 4COF) [14] were downloaded 
from the Protein Data Bank [7]. The human α1β3γ2 sequence 
(supplementary data) was then threaded on to the backbone, fol-
lowed by the addition of hydrogens and minimization using the 
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Schrödinger software Prime suit (Schrödinger Release 2017-1: 
Prime, Schrödinger, 2017) (20, 21). A subsequent structure of the 
human α1β3γ2 structure was deposited in the PDB: 6I53 [15] and 
concurred well with our model (RMSD<1Å). Structure compari-
sons and visualization were performed using the PyMOL Molecu-
lar Graphics System, Version 1.8; Schrödinger (New York, NY). 

2.2. Peptide Discovery 
 Structure-based peptide discovery was performed using the 
LINEPEP module that uses reinforcement learning algorithms 
based on risk-return heuristics as previously described [16]. In 
brief, potential docking decisions are analyzed using both risk and 
return parameters. Return is assessed as the potential binding-
energy contribution of a particular decision, whereas risk is as-
sessed as a measure of the sum of returns of all mutually exclusive 
decisions. Potential decisions are then eliminated if found ineffi-
cient, exposing more risk than decisions of similar returns. When 
applied in reinforcement learning, each decision can be analyzed as 
having both an expected risk and an expected return, with the ex-
ploration probability taking both factors into account.    
 To focus on the discovery of peptides that bind with the GABA 
binding site, a 15Å search grid was centered around tyrosine 62 of 
chain E of the threaded structure model. Side chain composition 
was limited to the 20 natural amino acids for the initial screening, 
with non-natural subunits used after the initial screening to validate 
the binding model.   

2.3. Peptide Synthesis 
 Lyophilized peptides were produced at EMC Microcollections 
(Tubingen, Germany) and stored at 20°C until use. Peptides were 
reconstituted/dissolved in DMSO as concentration of either 10 mM 
or otherwise to the highest possible concentration as indicated. 
Sonication was used to dissolve the peptides if necessary. For each 
experiment, the stock solution was diluted in DMEM to the appro-
priate working concentration (between 1 mM and 0.1 mM). The 
peptides are diluted in such a way that the final DMSO concentra-
tion in minimal media did not exceed 0.1%.  

2.4. Activity Analysis 
  GABAAR activity was analyzed by manual whole-cell patch-
clamp technique at B‘SYS GmbH (Witterswil, Switzerland) on 
α1β3γ2 GABAAR Transfected HEK293 cells, measuring chlorine 
currents upon introduction of GABA and/or tested peptides.   
 Recombinant HEK293 cells were continuously maintained in 
and passaged in sterile culture flasks containing a 1:1 mixture of 
Dulbecco’s modified eagle medium and nutrient mixture F-12 (D-
MEM/F-12 1x, liquid with L-Glutamine supplemented with 10% 
fetal bovine serum and 1.0% Penicillin/Streptomycin solution, 
supplemented with the following selection antibiotics: 300 µg/mL 
Geneticin, 100 µg/mL Hygromycin B and 25 µg/mL Zeocin. 
 In general, cells were passaged at a confluence of about 50%- 
80%. For electrophysiological measurements cells were harvested 
from sterile culture flasks, containing culture complete medium 
and plated on Poly-L-Lysine coated coverslips. Confluent clusters 
of cells are electrically coupled. Because responses in distant cells 
are not adequately voltage-clamped, and because of uncertainties 
regarding the extent of coupling, cells were cultivated at a density 
that enables single cells (without visible connections to other cells) 
to be measured. 
 As an initial calibration, GABA inward currents were meas-
ured upon application of submaximal GABA concentration (2 µM) 
to patch-clamped cells. The cells were voltage-clamped at a hold-
ing potential of -80 mV. If current density was judged to be too 
low for measurement, another cell was recorded. To test for pep-
tide agonist activity, 30 seconds after the last GABA application, 
100 µM of the tested peptides were perfused without GABA. This 

was followed by a test for antagonist/modulator activity; after 5 
seconds of pre-incubation of test item, GABAA receptors were 
stimulated by GABA (2µM) in the presence of the same test item 
concentration. Finally, following washing of the cells, 100 µM 
Pentobarbital was used as a positive control. 

2.5. EC50 Determination 
 SigmaPlot 11.0 was used to construct the dose-response curves 
with a sigmoidal three-parameter equation:  

!"##$%&  (!"#$, !"#$%&'") =   !"#$
(1 + 10([!"#  〖!"!"!!〗)!) 

Where, X is the drug concentration, Emax the upper asymptote, 
EC50 the concentration of the test item at half-maximal effect, and 
H is the Hill coefficient. 

3. RESULTS  
 As no human α1β3γ2 GABAAR structure was available at the 
time of the initiation of this study, a modelled structure was used as 
input and retroactively shown to be of high fidelity (RMSD<1Å); for 
clarity sake, the residue numbers and chains reported herein will be 
the ones used in the solved structure (PDB: 6I53) [15]. The peptide 
search grid was located in the interface formed by the β3 and α1 
subunits.  
 The peptide solution set was clustered into two primary back-
bone models: Peptides centered around an N-terminal glutamic 
acid and peptides centered around an N-methyl histidine, with 
arginine outliers (Fig. 1A). Additionally, a few of the cluster pep-
tides were selected: RFHS, KTTSI and TESKG-CONH2. 
 The N-terminal glutamic acid group showed a calculated bind-
ing energy contribution distribution that was heavily leaning to-
wards the N-terminal glutamic acid, which in itself can be consid-
ered a GABA analogue with three aliphatic carbons connecting the 
NH3+ motif to the COO- motif. To further illustrate this, we super-
imposed our model GABAAR to a rat α1β1γ2S solved structure 
(PDB: 6DW0)[17] with a calculated RMSD of 1.1Å. The N-
terminus glutamic acid was indeed positioned very similarly to the 
GABA, with a distance of 0.7Å between the COOH- carbon 
groups, with 2.2Å between the NH3+ nitrogen atoms (Fig. 1B). 
Additionally, the GABA-like cluster was significantly smaller (4 
unique members) than the N-methyl histidine group (10 members) 
(Fig. 1C). We hence ruled out this group for lacking novelty, and it 
was not further analyzed. 
 The N-methyl histidine group was synthesized and tested using 
the patch-clamp technique on α1β3γ2 GABAAR transfected 
HEK293 cells for initial screening. Cellular chlorine currents were 
measured at the base level with GABA alone and the peptides 
alone, and with the peptides together with GABA. As a positive 
control, 500mM of Pentobarbital was used together with 2µM 
GABA. 
 None of the peptides showed agonist activity, and no signifi-
cant chlorine current change was observed when peptides were 
introduced alone. When the peptides were introduced with GABA, 
significant potentiation was measured when compared to GABA 
alone. This pattern was shared by all members of the N-methyl 
Histidine cluster, suggestive of a common mode of action. The 8 
peptides of the cluster ranged in increased potentiation from 40% 
to 380%, when measured at peptide concentrations of 100µM (Ta-
ble 1). 
 The two most potent peptides were selected for dose-response 
analysis. The HTWQE peptide showed maximal potentiation  
(Emax) of 388% (Supplementary Fig. 1) with a dose-response 
reaching 50% excitation (EC50) at 6.5µM (Hill coefficient = 1.24) 
(Fig. 2A). The Q4Y variant HTWYE showed an Emax of 285%,  
(Supplementary Fig. 7) with an EC50 of 3.7µM (Hill coefficient = 
1.01) (Fig. 2B). 



Discovery of Novel GABAAR Allosteric Modulators Through Reinforcement Learning Current Pharmaceutical Design, 2021, Vol. 27, No. 00    3 

 
A) The solution peptides were clustered into two main clusters by backbone Root Means Squared Deviation. One cluster was dominated by N-term histidine 
residues (circle) and the other by N-terminal glutamic acid residues. 
 

 
B) Superimposition of the glutamic acid cluster to a solved receptor structure with GABA (PDB: 6DW0) revealed a high degree of similarity between the 
modeled glutamic acid and GABA. 

 

C) The members of the two main reinforcement learning solution set clusters A: share the histidine N-term binding mode and B. share a glutamic acid binding 
mode.  
 

Fig. (1). Solution set clusters. (A higher resolution/colour version of this figure is available in the electronic copy of the article). 
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Table 1. N-term histidine cluster, GABAAR allosteric activation. 

S. No. Position: 1 2 3 4 5 % Increased  
Excitation 

Supplementary  
Figure: 

1 - H T W Q E 388 1 

2 - H T W K K 41 6 

3 - H T W Y E 280 7 

4 - H P P A T 92 8 

5 - H I S-CONH2 
  

61 9 

6 - H T T G D 211 12 

7 - H T W P 
 

169 14 

8 - H P W Q 
 

124 15 

9 - R T W Q E n.d. 
 

10 - R T W G E 53 13 

Peptides were clustered by backbone root means square deviation (RMSD). The most dominant cluster was dominated by N-terminal histidine residues (8/10). The peptides were 
synthesized and their activity was analyzed by patch-clamp analysis on GABAAR expressing HEK293 cells. Complete experimental data is available at the referenced supplemen-
tary figure. 

 
 The N-terminal histidine that defined the cluster was also pre-
dicted by the software to be the dominant binding energy contribu-
tor, binding deep in the GABAAR pocket, an area with an abun-
dance of aromatic rings. This could allow histidine to have a sig-
nificant binding energy contribution, regardless of its modeled 
hydrogen bonds. To validate this, we synthesized two hydrophobic 
variants of HTWQE, modeled to be spatially compatible with  
its binding model: (2-flouro-L-phenylalanine)TWQE and (L-
cyclohexylalanine)TWQE; both peptides showed the same alloster-
ic activator activity pattern as HTWQE (224% and 62%, at 
100µM, respectively) (Supplementary Figs. 5 and 2). 
 The N-terminal histidine residue was also modeled to poten-
tially interact electrostatically with the backbone oxygen of α1 
tyrosine 160, serving as a hydrogen bond donor. One of the clus-
ter’s outliers, RTWGE showed a similar backbone conformation as 
HTWQE (RMSD<0.1Å) and showed moderate allosteric activa-
tion, increasing chlorine ion flow by 53% at 100µM (Supplemen-
tary Fig. 13). The replacement of histidine with arginine was also 
modeled to additionally serve as a hydrogen bond donor to the α1’s 
threonine 207 and tyrosine 210 sidechains.  
 The N-terminal backbone nitrogen, normally cationic in bio-
logic solutions, was modeled to form a salt-bridge with β3’s aspar-
tate in position 43, coupled by a cation-π interaction with β3’s 
tyrosine 62. 
 Position 2 was dominated by threonine, predicted to bind the 
threonine in position 176 of the β3 subunit, with a possible addi-
tional interaction with asparagine 41 of the same subunit. As the 
backbone nitrogen atom was predicted to be buried without an 
electrostatic interaction, some of the models replaced threonine 
with proline (Table 1), trading favorable electrostatic interactions 
with more favorable desolvation.  In both cases, the position 2 
backbone oxygen was modeled to receive hydrogen bonds from 
serine 206 side-chain and backbone nitrogen of α1. 
 Position 3 was dominated by tryptophan, contributing to bind-
ing primarily by hydrophobic interactions. Similar interactions 
were modeled with proline. Threonine and serine in position 3 
were modeled to donate a hydrogen bond to the backbone of posi-
tion 204 of chain α1.  
 Position 4 was modeled to interact with the backbone oxygen 
of β3 lysine in position 173 when composed of lysine, tyrosine or 
glutamine. Other variants of position 4 included alanine, glycine 

and proline, indicating that binding energy rewards for this posi-
tion are not dominant.  
 When glutamic or aspartic acid were modeled in position 5, the 
primary contribution was a salt bridge with the β3 lysine in posi-
tion 173. This salt bridge is modeled to be primarily solvated, 
providing a modest calculated binding energy contribution. This 
was, however, found experimentally to exist in the 3 most potent 
peptides.  
 Our model suggested that the HTWQE binding model can be 
compatible with methylation of histidine side chain and threo-
nine/tryptophan backbones. The (3-methyl-L-histidine) (N-methyl-
threonine) (N-methyl-tryptophan)QE peptide was synthesized and 
showed increased potentiation of 106%, when measured at peptide 
concentrations of 100µM (Supplementary Fig. 4). A similar pep-
tide, without the tryptophan methylation, has shown increased 
potentiation of 58% at 100µM (Supplementary Fig. 3).  
 The non-clustered peptide models were also screened at 100 
µM. The RFHS and TESKG-CONH2 peptides showed allosteric 
potentiation increases of 91% and 46%, respectively (Supplemen-
tary Figs. 10 and 11). The KTTSI peptide showed no significant 
effect on chlorine ion flow when introduced alone or with GABA. 

4. DISCUSSION 
 In this study, we used reinforcement learning guided virtual 
screening to discover novel peptide modulators for α1β3γ2 
GABAAR. Large chemical spaces, coupled with rather lengthy 
docking procedures, currently limit exhaustive virtual screening 
efforts. Reinforcement learning provides a potentially unbiased 
approach, avoiding training sets of supervised learning, which 
naturally carry a bias towards molecules that mimic known lig-
ands.  
 The basic heuristic of reinforcement learning involves the crea-
tion of agents or “bots” that perform the docking task. Each “bot” 
is composed of sequence selection, docking and learning algo-
rithms that enable it to dock peptides to the target protein. As the 
process evolves, “bots” exchange information and methodologies 
between them, allowing for more efficient sequence selection and 
docking processes. The underline goal of this strategy is to create 
a process which increases the speed and scope of virtual screen-
ing while least compromising the quality of the calculated solu-
tion set. 
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A) HTWQE (PTC-I-01) modulated the response to GABA (2µM) in a dose-dependent manner. The EC50 value was determined to 6.50 µM (Hill coeff. 1.24). 
Emax was determined to 217.19%. 

 
B) HTWYE(PTC-I-03) modulated GABA (2µM) response in a dose-dependent manner. The EC50 value was determined to 3.72 µM (Hill coeff. 1.01). Emax 
was determined to 201.50%. Results at 500 mM were not used for EC50 determination. 
 

Fig. (2). Patch-clamp dose-response of GABAAR transfected HEK293 cells. (A higher resolution/colour version of this figure is available in the electronic 
copy of the article). 
 
 One of the critical dilemmas faced by a “bot” is whether to 
better exploit its current solution, or alternately, explore the con-
formational and grid spaces. So, for example, if a bot is tasked at 
docking a sequence such as ATQRS, it may exploit the already 
docked model of a sequence such as ASQRS, threading the query 
sequence to it, or explore a novel solution by docking ATQRS 
without this prior knowledge. The management of this dilemma is 
one of the key challenges in molecular screening by reinforcement 
learning. Over exploring will render the method too slow, essen-

tially turning it into a virtual screening method while over exploit-
ing may miss out on novel solutions. Alternately, once a significant 
number of sequences have been docked, efficiently exploiting the 
solved solution set becomes a tedious task as well, with the side 
chain exploit search space being equal to (number of subunit 
types)(chain length) threaded sequences per each docked backbone 
model.   
 We have previously reported that heuristics taken from finan-
cial portfolio management can be deployed to manage the exploit 
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process more efficiently [16]. In this Risk Adjusted Design (RAD) 
method, “bots” calculate a structural “risk” and “return” values for 
each possible mutation in each position; the bots then exploit the 
docked backbones threading the individual positions of each 
docked structure only with side chains included in the “risk/return 
efficient set”, dramatically minimizing the exploitation search 
space [16].  This threading can later serve new “bots” to further 
dock additional sequences based on the threaded sequences, so 
using the  sequence from the above example,  a new bot that se-
lected the ATQRSW sequence can exploit the docked sequences of 
ATQRS or other similar sequences using “bot” defined prefer-
ences, exploring only possible locations for W or docking the en-
tire sequence.  
 In this case, reinforcement learning provided two solution clus-
ters for the relatively small pocket formed by the β3 and α1 subu-
nits: A GABA-like cluster, which could have been theoretically 
provided by GABA pharmacophore-based screening (Fig. 1A and 
1B) and the histidine cluster (Fig. 1A). The GABA-like cluster was 
smaller in both the number of solutions and the number of amino-
acids per each solution (Fig. 1C). This highly suggested that rein-
forcement learning converged on to a GABA centered consensus 
sequence, and in fact, attempted to re-create GABA using the ami-
no-acid building blocks available to it. This is impressive at the 
machine learning level, as the software was unaware that the input 
target structure was a GABA receptor, nor did the input included a 
reference structure of GABA. However, for practicality, the 
GABA-like cluster lacked novelty, as it could have been derived 
theoretically from the pharmacophore of GABA. The histidine 
cluster, which showed no similarity to any known ligands, was 
selected for synthesis and testing for the discovery of new, novel 
ligands. 
 The molecules of this cluster showed positive allosteric modu-
lator activity. This phenomenon is more consistent with the previ-
ously reported benzodiazepines (BZD) positive allosteric modula-
tors [18].  
 The benzodiazepine diazepam (DZP, Valium) recently had 
been analyzed using HEK293 patch-clamp analysis showing an 
EC50 of 7.428nM with an efficacy of 171.9% for GABA [19]. The 
structure of diazepam bound to the α1β3γ2 GABAAR has been 
solved (PDB: 6HUP)[20]. Diazepam was shown to bind the α1/γ2 
pocket and upon superimposition to our α1/β3- HTWQE model 
(RMSD<1Å), it showed an aromatic ring located in the same area 
as our histidine side chain. A similar observation was also repeated 
in the solved structure of GABAAR with alprazolam (ALP, 
Xanax) (PDB: 6HUO)[20]. The backbone oxygen of residue 1 
showed proximity (<1Å) to the oxygen of diazepam.    
 Superimposition of our peptide binding α1/β3 pocket models to 
diazepam’s α1/γ2 pocket showed plausible compatibility. The ar-
omatic rings that characterized the model of histidine 1 were pre-
served, as were the α1 interactions modeled for arginine in position 
1. The N-terminal backbone nitrogen showed cation-π interaction 
with γ2’s tyrosine 58 and phenylalanine 77. In position 2, the 
backbone oxygen retained the hydrogen bond donations from α1. 
The side chain of position 2 did not seem to form significant inter-
actions. The residues of position 3 retained their α1 binding model, 
whereas positions 4 and 5 remained primarily solvated and did not 
form specific interactions with the receptor. This relatively high 
binding mode compatibility suggests that the peptides bind either 
the α1/β3 pocket, the α1/γ2 pocket or both. Further investigation is 
required to clarify the exact mode of action. 

CONCLUSION 
 In this study, we used reinforcement learning guided virtual 
screening to discover novel GABAAR modulating peptides. Two 
peptides with EC50 values in the low micromolar range were dis-
covered out of 13 peptides screened. This demonstrates a good 

feasibility study for the virtual screening option for targets that are 
difficult to screen in vitro, such as membrane ion channels. 
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